-- Finite maps as association lists
module Prelude.AssocList where

open import Prelude.Init
open import Prelude.DecEq
open import Prelude.Decidable
open import Prelude.Irrelevance
open import Prelude.Default

AssocList : Type  Type  Type
AssocList K V = List (K × V)

mapValues :  {K V V′}  (V  V′)  AssocList K V  AssocList K V′
mapValues f = map (map₂ f)

module _ {K V : Type} where
  _∈ᵐ_ _∉ᵐ_ : K  AssocList K V  Type
  k ∈ᵐ m = AnyFirst ((k ≡_)  proj₁) m
  k ∉ᵐ m = ·¬ (k ∈ᵐ m)

  ∈ᵐ-irrelevant :  {k m}  Irrelevant (k ∈ᵐ m)
  ∈ᵐ-irrelevant = AnyFirst-irrelevant λ where refl refl  refl

  _∪_ : Op₂ (AssocList K V)
  _∪_ = _++_

  module _  _ : DecEq K  where

    _∈ᵐ?_ = ¿ _∈ᵐ_ ¿²
    _∉ᵐ?_ = ¿ _∉ᵐ_ ¿²

    _‼_ :  {k : K} (m : AssocList K V)  k ∈ᵐ m  V
    m  p = L.First.satisfied p .proj₁ .proj₂

    opaque
      _⁉_ : AssocList K V  K  Maybe V
      m  k with k ∈ᵐ? m
      ... | yes p = just (m  p)
      ... | no  _ = nothing

    module _ {k : K} {m : AssocList K V} where
      _∷~_ : k ∈ᵐ m  (V  V)  AssocList K V
      p ∷~ f = m [ L.First.index p ]∷= (k , f (m  p))

      _∷=_ : k ∈ᵐ m  V  AssocList K V
      p ∷= v = p ∷~ const v

    module _  _ : Default V  where

      modify : K  (V  V)  Op₁ (AssocList K V)
      modify k f m with k ∈ᵐ? m
      ... | no _  = (k , f def)  m
      ... | yes p = p ∷= f (m  p)

      opaque
        set : K  V  Op₁ (AssocList K V)
        set k v = modify k (const v)

      _‼d_ : AssocList K V  K  V
      m ‼d k with m  k
      ... | nothing = def
      ... | just v  = v

      postulate -- TODO: proof
        get∘set≡id :  {k : K} {v : V} {m : AssocList K V}
           set k v m  k  just v

        k'≢k-get∘set :  {k k' : K} {v : V} {m : AssocList K V}
           k'  k
           set k' v m  k  m  k

        k'≢k-set-assoc :  {k k' : K} {v v' : V} {m : AssocList K V}
           k'  k
           set k v (set k' v' m)  set k' v' (set k v m)

      k'≢k-get∘set∘set :  {k k' : K} {v v' : V} {m : AssocList K V}
         k'  k
         set k v (set k' v' m)  k  set k v m  k
      k'≢k-get∘set∘set {k} {k'} {v} {v'} {m} p =
        trans
          (cong (_⁉ k) (k'≢k-set-assoc {k} {k'} {v} {v'} {m} p))
          (k'≢k-get∘set {k} {k'} {v'} {m = set k v m} p)