module Haskell.Extra.Dec where open import Haskell.Prelude open import Haskell.Extra.Refinement open import Agda.Primitive private variable ℓ : Level P : Set @0 Reflects : Set ℓ → Bool → Set ℓ Reflects P True = P Reflects P False = P → ⊥ of : {b : Bool} → if b then P else (P → ⊥) → Reflects P b of {b = False} np = np of {b = True} p = p invert : ∀ {b} → Reflects P b → if b then P else (P → ⊥) invert {b = False} np = np invert {b = True} p = p extractTrue : ∀ { b } → ⦃ true : b ≡ True ⦄ → Reflects P b → P extractTrue {b = True} p = p extractFalse : ∀ { b } → ⦃ true : b ≡ False ⦄ → Reflects P b → (P → ⊥) extractFalse {b = False} np = np mapReflects : ∀ {cond} → (a → b) → (b → a) → Reflects a cond → Reflects b cond mapReflects {cond = False} f g x = x ∘ g mapReflects {cond = True} f g x = f x Dec : ∀ {ℓ} → @0 Set ℓ → Set ℓ Dec P = ∃ Bool (Reflects P) {-# COMPILE AGDA2HS Dec inline #-} mapDec : @0 (a → b) → @0 (b → a) → Dec a → Dec b mapDec f g (True ⟨ x ⟩) = True ⟨ f x ⟩ mapDec f g (False ⟨ h ⟩) = False ⟨ h ∘ g ⟩ {-# COMPILE AGDA2HS mapDec transparent #-} ifDec : Dec a → (@0 {{a}} → b) → (@0 {{a → ⊥}} → b) → b ifDec (b ⟨ p ⟩) x y = if b then (λ where {{refl}} → x {{p}}) else (λ where {{refl}} → y {{p}}) {-# COMPILE AGDA2HS ifDec inline #-}