{-# OPTIONS --cubical-compatible --safe #-}
module Data.Vec.Relation.Unary.All.Properties where
open import Data.Nat.Base using (ℕ; zero; suc; _+_)
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.List.Base using ([]; _∷_)
open import Data.List.Relation.Unary.All as List using ([]; _∷_)
open import Data.Product.Base as Prod using (_×_; _,_; uncurry; uncurry′)
open import Data.Vec.Base as Vec
import Data.Vec.Properties as Vecₚ
open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
open import Level using (Level)
open import Function.Base using (_∘_; id)
open import Function.Bundles using (_↔_; mk↔ₛ′)
open import Relation.Unary using (Pred) renaming (_⊆_ to _⋐_)
open import Relation.Binary.Core using (REL)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; cong; cong₂; →-to-⟶)
private
variable
a b p q : Level
A : Set a
B : Set b
P : Pred A p
Q : Pred B q
m n : ℕ
xs : Vec A n
lookup⁺ : All P xs → ∀ i → P (Vec.lookup xs i)
lookup⁺ (px ∷ _) zero = px
lookup⁺ (_ ∷ pxs) (suc i) = lookup⁺ pxs i
lookup⁻ : (∀ i → P (Vec.lookup xs i)) → All P xs
lookup⁻ {xs = []} pxs = []
lookup⁻ {xs = _ ∷ _} pxs = pxs zero ∷ lookup⁻ (pxs ∘ suc)
map⁺ : {f : A → B} → All (P ∘ f) xs → All P (map f xs)
map⁺ [] = []
map⁺ (px ∷ pxs) = px ∷ map⁺ pxs
map⁻ : {f : A → B} → All P (map f xs) → All (P ∘ f) xs
map⁻ {xs = []} [] = []
map⁻ {xs = _ ∷ _} (px ∷ pxs) = px ∷ map⁻ pxs
gmap : {f : A → B} → P ⋐ Q ∘ f → All P {n} ⋐ All Q {n} ∘ map f
gmap g = map⁺ ∘ All.map g
++⁺ : {xs : Vec A m} {ys : Vec A n} →
All P xs → All P ys → All P (xs ++ ys)
++⁺ [] pys = pys
++⁺ (px ∷ pxs) pys = px ∷ ++⁺ pxs pys
++ˡ⁻ : (xs : Vec A m) {ys : Vec A n} →
All P (xs ++ ys) → All P xs
++ˡ⁻ [] _ = []
++ˡ⁻ (x ∷ xs) (px ∷ pxs) = px ∷ ++ˡ⁻ xs pxs
++ʳ⁻ : (xs : Vec A m) {ys : Vec A n} →
All P (xs ++ ys) → All P ys
++ʳ⁻ [] pys = pys
++ʳ⁻ (x ∷ xs) (px ∷ pxs) = ++ʳ⁻ xs pxs
++⁻ : (xs : Vec A m) {ys : Vec A n} →
All P (xs ++ ys) → All P xs × All P ys
++⁻ [] p = [] , p
++⁻ (x ∷ xs) (px ∷ pxs) = Prod.map₁ (px ∷_) (++⁻ _ pxs)
++⁺∘++⁻ : (xs : Vec A m) {ys : Vec A n} →
(p : All P (xs ++ ys)) →
uncurry′ ++⁺ (++⁻ xs p) ≡ p
++⁺∘++⁻ [] p = refl
++⁺∘++⁻ (x ∷ xs) (px ∷ pxs) = cong (px ∷_) (++⁺∘++⁻ xs pxs)
++⁻∘++⁺ : {xs : Vec A m} {ys : Vec A n} →
(p : All P xs × All P ys) →
++⁻ xs (uncurry ++⁺ p) ≡ p
++⁻∘++⁺ ([] , pys) = refl
++⁻∘++⁺ (px ∷ pxs , pys) rewrite ++⁻∘++⁺ (pxs , pys) = refl
++↔ : {xs : Vec A m} {ys : Vec A n} →
(All P xs × All P ys) ↔ All P (xs ++ ys)
++↔ {xs = xs} = mk↔ₛ′ (uncurry ++⁺) (++⁻ xs) (++⁺∘++⁻ xs) ++⁻∘++⁺
concat⁺ : {xss : Vec (Vec A m) n} →
All (All P) xss → All P (concat xss)
concat⁺ [] = []
concat⁺ (pxs ∷ pxss) = ++⁺ pxs (concat⁺ pxss)
concat⁻ : (xss : Vec (Vec A m) n) →
All P (concat xss) → All (All P) xss
concat⁻ [] [] = []
concat⁻ (xs ∷ xss) pxss = ++ˡ⁻ xs pxss ∷ concat⁻ xss (++ʳ⁻ xs pxss)
module _ {_~_ : REL A B p} where
All-swap : ∀ {n m xs ys} →
All (λ x → All (x ~_) ys) {n} xs →
All (λ y → All (_~ y) xs) {m} ys
All-swap {ys = []} _ = []
All-swap {ys = y ∷ ys} [] = All.universal (λ _ → []) (y ∷ ys)
All-swap {ys = y ∷ ys} ((x~y ∷ x~ys) ∷ pxs) =
(x~y ∷ (All.map All.head pxs)) ∷
All-swap (x~ys ∷ (All.map All.tail pxs))
module _ {P : A → Set p} where
tabulate⁺ : ∀ {n} {f : Fin n → A} →
(∀ i → P (f i)) → All P (tabulate f)
tabulate⁺ {zero} Pf = []
tabulate⁺ {suc n} Pf = Pf zero ∷ tabulate⁺ (Pf ∘ suc)
tabulate⁻ : ∀ {n} {f : Fin n → A} →
All P (tabulate f) → (∀ i → P (f i))
tabulate⁻ (px ∷ _) zero = px
tabulate⁻ (_ ∷ pf) (suc i) = tabulate⁻ pf i
drop⁺ : ∀ m {xs} → All P {m + n} xs → All P {n} (drop m xs)
drop⁺ zero pxs = pxs
drop⁺ (suc m) {x ∷ xs} (px ∷ pxs) = drop⁺ m pxs
take⁺ : ∀ m {xs} → All P {m + n} xs → All P {m} (take m xs)
take⁺ zero pxs = []
take⁺ (suc m) {x ∷ xs} (px ∷ pxs) = px ∷ take⁺ m pxs
module _ {P : Pred A p} where
toList⁺ : ∀ {n} {xs : Vec A n} → All P xs → List.All P (toList xs)
toList⁺ [] = []
toList⁺ (px ∷ pxs) = px ∷ toList⁺ pxs
toList⁻ : ∀ {n} {xs : Vec A n} → List.All P (toList xs) → All P xs
toList⁻ {xs = []} [] = []
toList⁻ {xs = x ∷ xs} (px ∷ pxs) = px ∷ toList⁻ pxs
module _ {P : Pred A p} where
fromList⁺ : ∀ {xs} → List.All P xs → All P (fromList xs)
fromList⁺ [] = []
fromList⁺ (px ∷ pxs) = px ∷ fromList⁺ pxs
fromList⁻ : ∀ {xs} → All P (fromList xs) → List.All P xs
fromList⁻ {[]} [] = []
fromList⁻ {x ∷ xs} (px ∷ pxs) = px ∷ (fromList⁻ pxs)