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This technical report was written based on a now outdated version of the protocol.

The goal of this document is to provide a detailed analysis of the Peras protocol from an engineering point
of view, based upon the work done by the Innovation team between November and April 2024. The design
of the protocol itself is carried out by the Research team and is not the focus of this document as the paper
is still actively being worked on.

1 Executive summary
This section lists a number of findings, conclusions, ideas, and known risks that we have garnered as part of
the Peras innovation project.

1.1 Findings
1.1.1 Product-wise

We built evidence that the Peras protocol in its most recent incarnation can be implemented on top of Praos,
in the existing ouroboros-consensus codebase, without compromising the core operations of the node (block
creation, validation, and diffusion):

• Network Modelling has shown initial versions would add an unbearable overhead to block diffusion,
• Simulation and prototyping have allowed us to sketch implementation and better understand the inter-

play between Peras and Praos,
• Decoupling votes and certificates handling from blocks handling could pave the way to a smooth incre-

mental building and deployment of Peras,
• While still not formally evaluated (see Remaining questions section) it seems the impact of vote and

certificates diffusion on node operation will not be significant and the network will provide strong
guarantees those messages can be delivered in a timely fashion.

We clarified the expected benefits of Peras over Praos expressed in terms of settlement failure probabili-
ties: Outside cool-down period, with the proper set of parameters, Peras provides the same probability of
settlement failure than Praos faster by a factor of roughly 1000, i.e. roughly 2 minutes instead of 36 hours.
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https://github.com/IntersectMBO/ouroboros-consensus
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1.1.2 Process-wise

The following picture sketches the architecture of the project and the interaction between the various “do-
mains” relevant to Innovation team. Black lines represent implemented direct relations, grey lines and boxes
represent planned relations and tools, green lines represent expected feedback relations.

Figure 1: Peras Project Architecture

We confirmed the relevance of ΔQ modeling technique to provide insights on a protocol’s performance profile,
and how particular design decisions (even apparently minor ones) can impact this performance profile. We
also gave feedback to the maintainers on the current state of the tool and libraries, and how to improve it in
order to increase the reach of this technique.

We explored the use of formal modeling language Agda to specify the protocol and application of Proof-of-
Stake-specific proof techniques to state and prove relevant properties of the protocol. We also started work
on building a trail of evidence from research to implementation by:

• Experimenting with Quviq on the generation of quickcheck-dynamic test models from Agda models,
• Sketching a research-centric Domain Specific Language that could be used in research papers and as a

foundation for formal modeling and engineering work.

While prototyping, we demonstrated the applicability of an Agda-centric chain of evidence even to “foreign”
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languages by testing with quickcheck-dynamic the same properties against Haskell and Rust prototypes,
collaborating with the Creative engineering team on sketching a network simulator library in Rust.

1.2 Remaining questions
There remain a number of open questions that could be investigated in future work increments.

• Peras features, both benefits and shortcomings, need to be aligned with business cases and overall
strategy for scaling Cardano. This implies more research is needed in two directions:

– From a product and user perspective, to evaluate the actual value that Peras delivers and the
possible countermeasures to its drawbacks (e.g. the risk of cool-down could be covered by an
options or insurance premium mechanism),

– From a technical perspective, to explore the parameters space and find the best combinations.
• There are a number of components about which we have some ideas but no concrete figures or design:

– Certificate structure and capabilities,
– Vote and certificate CPU requirements and their possible impact on the node,
– Optimal committee size,

• The protocol leaves room for a wide choice of options to design an implementation that should be
considered and refined,

• There is a need for more theoretical research on ways to make cool-down less impactful.

2 Previous work
2.1 Peras workshop
The following sections recall the questions that were raised during the kick-off workshop in September 2023,
points to the answers given, and details the SRL assessment along with a comparison with current estimated
SRL.

2.1.1 Questions about Peras

For each of these questions we check whether or not it has been answered:

⊠ How do you detect double voting? Is double voting possible? How can the voting state be bounded?
– each vote is signed individually and the signature is checked by the receiving node
– the voting state is bound by the committee size and the limited validity for each vote

⊠ How are the voting committee members selected? What are the properties of the voting committee?
– Committee members are selected by a VRF-based sortition, its properties are exposed in the paper

and overview
⊠ Where should votes be included: block body, block header, or some other aggregate

– models and simulation show that votes need to be propagated and aggregated independently while
not in cooldown period

– the “anchor” certificate used in cooldown period will need to be part of or attached to block bodies
while its weight could be recorded as part of the corresponding block header

□ Under what circumstance can a cool down be entered?
– The question of how much adversarial power is needed to trigger a cool-down period is still open

⊠ How significant is the risk of suppressing votes to trigger a cool-down period?

https://github.com/input-output-hk/ce-netsim
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– it is significant, as being able to trigger cool-downs often ruins the benefits of Peras
□ Should vote contributions be incentivized?

– this question has not been explored in this report
⊠ How much weight is added per round of voting?

– This is a parameter 𝐵 in the protocol whose exact value depends on business requirements
□ How to expose the weight/settlement of a block to a consumer of chain data, such as a wallet?

– This has not been addressed yet, as most of the user-facing and business domain aspects of the
protocol

⊠ Can included votes be aggregated into an artifact to prove the existence of votes & the weight they
provide?

– This is the role of certificates

2.1.2 Potential experiments for Peras

We refer the reader to the relevant section for each of those potential experiments to demonstrate
(in)feasability of Peras:

⊠ Network traffic simulation of vote messages
– This has been simulated but needs to be refined

⊠ Protocol formalization & performance simulations of Peras
– This has been done in Agda with (parts of) performance modeling using ΔQ and simulation

⊠ Optimal look-back parameter (measured in number of slots) within a round
□ Historic analytical study (𝑛-𝜎 for reliability based on the number of 9s desired)
⊠ Some parameters value are provided in the research paper and slides

□ Chain growth simulations for the accumulation of vote data
– This has not been done as the protocol has evolved since the workshop

⊠ Added chain catch-up time
– This is cool-down period length and is estimated in the slides

□ Cost of diffusing votes and blocks that contain votes
– not estimated

□ Need to refine: Details of VRF-based committee selection and its size

2.1.3 SRL

SRL (software readiness level) was initially assessed to be between 1 and 2, with the following definitions:

Questions to resolve Status
A concept formulated? Done
Basic scientific principles underpinning the concept identified? Done
Basic properties of algorithms, representations & concepts defined? Done
Preliminary analytical studies confirm the basic concept?
Application identified? Done (Partner

chains)
Preliminary design solution identified? Partial
Preliminary system studies show the application to be feasible?
Preliminary performance predictions made? Done
Basic principles coded?

https://docs.google.com/presentation/d/1QGCvDoOJIWug8jJgCNv3p9BZV-R8UZCyvosgNmN-lJU/edit#slide=id.g2ca1209fec0_0_450
https://docs.google.com/presentation/d/1QGCvDoOJIWug8jJgCNv3p9BZV-R8UZCyvosgNmN-lJU/edit#slide=id.g2ca1209fec0_0_450
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Questions to resolve Status
Modeling & Simulation used to refine performance predictions further and confirm
benefits?
Benefits formulated?
Research & development approach formulated? Done
Preliminary definition of Laboratory tests and test environments established? Preliminary
Experiments performed with synthetic data?
Concept/application feasibility & benefits reported in paper

We assess the current SRL to be between 3 and 4, given the following SRL 3 definition:

Questions to resolve Status
Critical functions/components of the concept/application identified? Done
Subsystem or component analytical predictions made? Partial
Subsystem or component performance assessed by Modeling and Simulation? Partial
Preliminary performance metrics established for key parameters? Done
Laboratory tests and test environments established? Done
Laboratory test support equipment and computing environment completed for
component/proof-of-concept testing?

N/A

Component acquisition/coding completed? No
Component verification and validation completed? Partial
Analysis of test results completed establishing key performance metrics for components/
subsystems?

Done

Analytical verification of critical functions from proof-of-concept made? Done
Analytical and experimental proof-of-concept documented? Done

3 Protocol specification
3.1 Overview
A presentation of the motivation and principles of the protocol is available in these slides. We summarize
the main points here but refer the interested reader to the slides for details.

• Peras adds a Voting layer on top of Praos, Cardano’s Nakamoto-style consensus protocol.
• In every voting round, stakeholders (SPOs) get selected to be part of the voting committee through a

stake-based sortition mechanism (using their existing VRF keys) and vote for the newest block at least
𝐿 slots old, where 𝐿 is a parameter of the construction (e.g., 𝐿 = 120 slots).

• Votes are broadcast to other nodes through network diffusion.
• If a block gains more than a certain threshold of votes (from the same round), a so-called quorum (𝜏),

it gets extra weight 𝐵 (where each block has a base weight of 1). Since nodes always select the heaviest
chain (as opposed to the longest chain in Praos), these blocks with extra weight accelerate settlement
of all blocks before them.

• A set of votes (from the same round) can be turned into a short certificate. Certificates are needed
during the cool-down period (see below), but they can also be broadcast to nodes that are catching up.

https://input-output.atlassian.net/wiki/spaces/CI/pages/3875110920/SRL+3+Analytical+and+or+experimental+critical+function+or+characteristic+proof-of-concept.
https://docs.google.com/presentation/d/1QGCvDoOJIWug8jJgCNv3p9BZV-R8UZCyvosgNmN-lJU/edit
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• If a quorum is not reached in a round, the protocol enters a cool-down period, in order to heal from
the “damage” that could result from adversarial strategies centered around withholding adversarial
votes. During the cool-down, voting is suspended, and block producers include information required
to coordinate the restart (the latest known certificate) in their blocks. The duration of the cool-down
period is roughly equal to the number of slots equivalent to produce k + B blocks, where k is the
settlement parameter of Praos.

3.1.1 Certificates

The exact construction of Peras certificates is still unknown but we already know the feature set it should
provide:

• A Peras certificate must be reasonably “small” in order to fit within the limits of a single block without
leading to increased transmission delay.

– The current block size on mainnet is 90kB, with each transaction limited to 16kB.
– In order to not clutter the chain and take up too much block estate, a certificate should ideally fit

in a single transaction.
• Certificates need to be produced locally by a single node from the aggregation of multiple votes reaching

a quorum.
– Certificate forging should be reasonably fast but is not critical for block diffusion: A round spans

multiple possible blocks so there is more time to produce and broadcast it.
• A certificate must be reasonably fast to verify as it is on the critical path of chain selection: When a

node receives a new block and/or a new certificate, it needs to decide whether or not this changes its
best chain according to the weight,

• The ALBA paper provides a construction through a mechanism called a Telescope which seems like a
good candidate for Peras certificates.

3.2 Pseudo-code
We initially started working from researchers’ pseudo-code which was detailed in various documents. In the
Paris Workshop in April 2024, we tried to address a key issue of this pseudo-code: The fact it lives in an
unstructured and informal document, is not machine-checkable, and is therefore poised to be quickly out of
the sync with both the R&D work on the formal specification, the prototyping work, and the research work.
This collective effort led to writing the exact same pseudo-code as a literate Agda document, the internal
consistency of which can be checked by the Agda compiler, while providing a similar level of flexibility and
readability than the original document.

This document is available in the Peras repository and is a first step towards better integration between
research and engineering work streams.

Next steps include:

• Refining the pseudo-code’s syntax to make it readable and maintainable by researchers and engineers
alike,

• Understanding how this code relates with the actual Agda code,
• Adding some semantics.

It is envisioned that at some point this kind of code could become commonplace in the security researchers

https://iohk.io/en/research/library/papers/approximate-lower-bound-arguments/
https://github.com/input-output-hk/peras-design/blob/65d8a98817df119b3902e43e5acca86fdcca6f92/src/Peras/ProtocolL.lagda.md#L1
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community in order to provide formally verifiable and machine-checkable specifications, based on the theo-
retical framework used by researchers (e.g. Universal Composition).

3.3 Settlement time
Practical Settlement Bounds for Longest-Chain Consensus (Gazi, Ren, and Russell, 2023) provides a formal
treatment of the settlement guarantees for proof-of-stake (PoS) blockchains.

Settlement time can be defined as the time needed for a given transaction to be considered permanent by
some honest party. On Cardano, the upper bound for settlement time is 3𝑘/𝑓 to produce 𝑘 subsequent
blocks, where 𝑘 is the security parameter and 𝑓 is the active slot coefficient. On the current mainchain, this
time is 36 hours. Note that even if in practice the settlement time is fixed, in theory this bound is always
probabilistic. The security parameter 𝑘 is chosen in such a way that the probability of a transaction being
reverted after 𝑘 blocks is lower than 10−60.

The following picture from the aforementioned paper shows block settlement failure probability given some
block depth for Cardano PoS chain. Under the assumptions given there, the probability for a transaction to
be rolled back after 20 blocks is 0.001% , and is exponentially decreasing with the block depth.

We also have anecdotal evidence from observations of the Cardano mainchain over the past few years that
the settlement time is much shorter than the theoretical bound, as basically forks over 2 blocks length are
exceedingly rare, and no fork over 3 blocks length has been observed on core nodes since the launch of Shelley.

There’s however no evidence this situation will continue in the future, obviously, as it could very well be the
case the network was never seriously under attack, hence we should take those numbers with caution.

3.3.1 Settlement bounds for Peras

Take the following analysis with a grain of salt as the researchers are still actively working on the protocol’s
security properties and numeric analysis.

While these numbers seem comforting and reasonably small to provide a very high degree of confidence after
less than 10 minutes (a block is produced on average every 20s), it should be noted that they are based
on non-existent to low adversarial power assumption (e.g. lower than 10% total stake), in other words they
represent the best case scenario and say nothing about the potential impact of an adversary with significant
resources and high motivation to either disrupt the network, e.g. as a form of denial of service to degrade
the perceived value of Cardano, or more obviously to double spend. As the stakes increase and the network
becomes more valuable, the probability of such an attack increases and our confidence in the settlement time
should be adjusted accordingly.

In the optimistic case, Peras is expected to provide the level of settlement Praos provides after 𝑘 blocks but
after only about a few rounds of voting. With the following parameters:

• Committee size 𝑆 = 2000,
• Boost per certificate 𝐵 = 𝑘/10 = 216,
• Quorum 𝜏 = 3𝑆/4 = 1500,
• Round length 𝑈 = 10 slots.

we can expect a negligible (< 10−60) probability of settlement failure after 10 rounds or 100 slots, which is
less than 2 minutes. In other words, Peras improves settlement upper bound over Praos by a factor of 1000,
in the optimistic case, e.g. outside of a cool-down period.

https://eprint.iacr.org/2022/1571.pdf
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Figure 2: Settlement failure probability / depth for 10% adversary
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However, triggering cool-down is cheap and does not require a large adversarial power as it is enough for an
adversary to be able to create a relatively short fork that lasts slightly longer than the length of the voting
window (𝐿) to be able to force a split vote and a cool-down period.

3.4 Agda specification
The formal specification of the Peras protocol is implemented in Agda. It is a declarative specification,
there are entities that are only defined by properties rather than by an explicit implementation. But still
the specification is extractable to Haskell and allows to generate QuickCheck tests for checking an arbitrary
implementation against the reference specification.

3.4.1 Domain model

The code here is substantially different from the pseudo-code mentioned before. These represent two different
lines of work that ultimately should be reconciled.

The domain model is defined as Agda data types and implemented with Haskell code extraction in mind.
The extractable domain model comprises entities like Block, Chain, Vote or Certificate. For example the
Agda record type for Block

record Block where
field slotNumber : Slot

creatorId : PartyId
parentBlock : Hash Block
certificate : Maybe Certificate
leadershipProof : LeadershipProof
signature : Signature
bodyHash : Hash (List Tx)

is extracted to the Haskell data type:

data Block = Block
{ slotNumber :: Slot
, creatorId :: PartyId
, parentBlock :: Hash Block
, certificate :: Maybe Certificate
, leadershipProof :: LeadershipProof
, signature :: Signature
, bodyHash :: Hash [Tx]
}
deriving (Eq)

Cryptographic functions are not implemented in the specification. For example, for hash functions there is
the record type Hashable

record Hashable (a : Set) : Set where
field hash : a → Hash a

that is extracted to a corresponding type class in Haskell:
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class Hashable a where
hash :: a -> Hash a

For executing the reference specification, an instance of the different kind of hashes (for example for hashing
blocks) needs to be provided.

3.4.1.1 Agda2hs In order to generate “readable” Haskell code, we use agda2hs rather than relying on
the standard Haskell generator code (MAlonzo) directly. It happens that agda2hs is not compatible with
the Agda standard library and therefore we are using the custom Prelude provided by agda2hs that is also
extractable to Haskell.

For extracting properties from Agda to Haskell we can use a similar type as the Equal type from the agda2hs
examples. The constructor for Equal takes a pair of items and a proof that those are equal. When extracting
to Haskell the proof gets erased. We can use this idea for extracting properties to be used with quick-check.

prop-genesis-in-slot0 : � {c : Chain} → (v : ValidChain c) → slot (last c) � 0
prop-genesis-in-slot0 = ...

propGenesisInSlot0 : � (c : Chain) → (@0 v : ValidChain c) → Equal �
propGenesisInSlot0 c v = MkEqual (slot (last c) , 0) (prop-genesis-in-slot0 v)

3.4.2 Small-step semantics

In order to describe the execution of the protocol, we are proposing a small-step semantics for Ouroboros
Peras in Agda based on ideas from the small-step semantics for Ouroboros Praos as laid out in the PoS-NSB
paper. The differences in the small-step semantics of the Ouroboros Praos part of the protocol are explained
in the following sections.

3.4.2.1 Local state The local state is the state of a single party, respectively a single node. It consists
of a declarative blocktree, i.e. an abstract data structure representing possible chains specified by a set of
properties. In addition to blocks, the blocktree for Ouroboros, Peras also includes votes and certificates and
for this reason there are additional properties with respect to those entities.

The fields of the blocktree allow to:

• Extend the tree with blocks and votes,
• Get all blocks, votes and certificates,
• Get the best chain.

The property stating that the best chain is always a valid chain is such a property:

valid : � (t : tT) (sl : Slot)
→ ValidChain (bestChain sl t)

The condition which chain is considered the best is given by the following property:

optimal : � (c : Chain) (t : tT) (sl : Slot)
→ let b = bestChain sl t

in
ValidChain c

https://agda.github.io/agda2hs
https://github.com/input-output-hk/peras-design/blob/65d8a98817df119b3902e43e5acca86fdcca6f92/src/Peras/SmallStep.lagda.md#L1
https://github.com/input-output-hk/peras-design/blob/65d8a98817df119b3902e43e5acca86fdcca6f92/src/Peras/SmallStep.lagda.md#L1


3 PROTOCOL SPECIFICATION 11

→ c � allBlocksUpTo sl t
→ weight c (certs t c) � weight b (certs t b)

In words, this says that the best chain is valid (ValidChain is a predicate asserting that a chain is valid with
respect to Ouroboros Praos) and the heaviest chain out of all valid chains is the best.

3.4.2.2 Global state In order to describe progress with respect to the Ouroboros Peras protocol, a global
state is introduced. The global state consists of the following entities:

• clock: Keeps track of the current slot of the system.
• state map: Map storing local state per party, i.e. the blocktrees of all the nodes.
• messages: All the messages that have been sent but not yet delivered.
• history: All the messages that have been sent.
• adversarial state: The adversarial state can be anything, with the type is passed to the specification as

a parameter.

The differences compared to the model proposed in the PoS-NSB paper are:

• the execution order is not stored in the global state and therefore permutations of the messages as well
as permutations of parties are not needed,

• the Progress of the system as described in the PoS-NSB paper is not stored in the global state, as we
define the global relation more granular

Instead of keeping track of the execution order of the parties in the global state, the global relation is
defined with respect to parties. The list of parties is considered fixed from the beginning and passed to
the specification as a parameter. Together with a party, we know as well the party’s honesty (Honesty is a
predicate for a party). Instead of keeping track of progress globally we only need to assert that before the
clock reaches the next slot, all the deliverable messages (i.e. messages where the delay is 0) in the global
message buffer have been consumed.

3.4.2.3 Global relation The protocol defines messages to be distributed between parties of the system.
The specification currently implements the following message types:

• Block message: When a party is the slot leader a new block can be created and a message notifying the
other parties about the block creation is broadcast. Note that, in case a cool-down phase according to
the Ouroboros Peras protocol is detected, the block also includes a certificate that references a block
of the party’s preferred chain,

• Vote message: When a party creates a vote according to the protocol, this is wrapped into a message
and delivered to the other parties.

The global relation expresses the evolution of the global state:

data _�_ : State� → State� → Set where

Deliver : � {M N p} {h : Honesty p} {m}
→ h � M [ m ]� N

--------------
→ M � N

CastVote : � {M N p} {h : Honesty p}
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→ h � M � N
---------

→ M � N

CreateBlock : � {M N p} {h : Honesty p}
→ h � M � N

---------
→ M � N

NextSlot : � {M}
→ Delivered M

-----------
→ M � tick M

The global relation consists of the following constructors:

• Deliver: A party consuming a message from the global message buffer is a global state transition. The
party might be honest or adversarial, in the latter case a message will be delayed rather than consumed,

• Cast vote: A vote is created by a party and a corresponding message is put into the global message
buffer for all parties respectively,

• Create block: If a party is a slot leader, a new block can be created and put into the global message
buffer for the other parties. In case that a chain according to the Peras protocol enters a cool-down
phase, the party adds a certificate to the block as well,

• Next slot: Allows to advance the global clock by one slot. Note that this is only possible, if all the
messages for the current slot are consumed as expressed by the Delivered predicate.

The reflexive transitive closure of the global relation describes what global states are reachable.

3.4.3 Proofs

The properties and proofs that we can state based upon the formal specification are in Properties.lagda.md.

A first property is knowledge-propagation, a lemma that states that knowledge about blocks is propagated
between honest parties in the system. In detail the lemma expresses that for two honest parties the blocks
in the blocktree of the first party will be a subset of the blocks of the second party after any number of state
transitions into a state where all the messages have been delivered. Or in Agda:

knowledge-propagation : � {N� N� : GlobalState}
→ {p� p� : PartyId}
→ {t� t� : A}
→ {honesty� : Honesty p�}
→ {honesty� : Honesty p�}
→ honesty� � Honest {p�}
→ honesty� � Honest {p�}
→ (p� , honesty�) � parties
→ (p� , honesty�) � parties
→ N� �� N�
→ N� �� N�
→ lookup (stateMap N�) p� � just � t� �

https://github.com/input-output-hk/peras-design/blob/65d8a98817df119b3902e43e5acca86fdcca6f92/src/Peras/SmallStep/Properties.lagda.md#L1
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→ lookup (stateMap N�) p� � just � t� �
→ Delivered N�
→ clock N� � clock N�
→ allBlocks blockTree t� � allBlocks blockTree t�

Knowledge propagation is a pre-requisite for the chain growth property, it informally states that in each
period, the best chain of any honest party will increase at least by a number that is proportional to the
number of lucky slots in that period, where a lucky slot is any slot where an honest party is a slot leader.

4 Network performance analysis
We provide in this section the methodology and results of the analysis of the Peras protocol performance in
the context of the Cardano network. This analysis is not complete as it only covers the impact of including
certificates in block headers, which is not a property of the protocol anymore. More analysis is needed on
the votes and certificates diffusion process following changes to the protocol in March 2024.

4.1 Certificates in block header
This section provides high-level analysis of the impact of Peras protocol on the existing Cardano network,
using ΔQSD methodology. In order to provide a baseline to compare with, we first applied ΔQ to the existing
Praos protocol reconstructing the results that lead to the current set of parameters defining the performance
characteristics of Cardano, following section 4 of the aforementioned paper. We then used the same modeling
technique taking into account the Peras protocol assuming inclusion of certificates in headers insofar
as they impact the core outcome of the Cardano network, namely block diffusion time.

One of the sub-goals for Peras project is to collaborate with PNSol, the original inventor of ΔQ methodology,
to improve the usability of the whole method and promote it as a standard tool for designing distributed
systems.

4.1.1 Baseline - Praos ΔQ modeling

4.1.1.1 Model overview Here is a graphical representation of the outcome diagram for the ΔQ model
of Cardano network under Praos protocol:

This model is based on the following assumptions:

• Full block diffusion is separated in a number of steps: request and reply of the block header, then
request and reply of the block body,

• Propagating a block across the network might require several “hops” as there is not a direct connection
between every pair of nodes, with the distribution of paths length depending on the network topology,

• We have not considered the probability of loss in the current model.

The block and body sizes are assumed to be:

• Block header size is smaller than typical MTU of IP network (e.g. 1500 bytes) and therefore requires a
single roundtrip of TCP messages for propagation,

• Block body size is about 64kB which implies propagation requires several TCP packets sending and
therefore takes more time.

https://iohk.io/en/research/library/papers/mind-your-outcomes-the-dqsd-paradigm-for-quality-centric-systems-development-and-its-application-to-a-blockchain-case-study/
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Figure 3: Outcome diagram for Praos
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As the Cardano network uses TCP/IP for its transport, we should base the header size on the Maximum
Segment Size, not the MTU. This size is 536 for IPv4 and 1220 for IPv6.

Average latency numbers are drawn from table 1 in the paper and depend on the (physical) distance between
2 connected nodes:

Distance 1 segment RTT (ms) 64 kB RTT (ms)
Short 12 24
Medium 69 143
Long 268 531

For each step in the diffusion of a block, we assume an equal ( 1
3 ) chance for each class of distance.

The actual maximum block body size at the time of this writing is 90kB, but for want of an actual delay
value for this size, we chose the nearest increment available. We need to actually measure the real value for
this block size and other significant increments.

We have chosen to define two models of ΔQ diffusion, one based on an average node degree of 10, and another
one on 15. Table 2 gives us the following distribution of paths length:

Length Degree = 10 Degree = 15
1 0.40% 0.60%
2 3.91% 8.58%
3 31.06% 65.86%
4 61.85% 24.95%
5 2.78% 0

These numbers are reflected (somewhat inaccurately) in the above graph, representing the probabilities for
the number of hops a block will have to go through before reaching another node.

The current target valency for cardano-node’s connection is 20, and while there are a large number of stake
pools in operation, there is some significant concentration of stake, which means the actual number of “core”
nodes to consider would be smaller and the distribution of paths length closer to 1.

4.1.1.2 Modeling process We have experimented with three different libraries for encoding this baseline
model:

1. Original ΔQ library built by Neil Davies, which uses randomized sampling to graph the Cumulative
Distribution Function resulting from the ΔQ model,

2. A library for algebraic representation of ΔQ models built to support the Algebraic Reasoning with Time-
liness paper, which uses discretization of probability density functions to approximate CFDs resulting
from the various ΔQ language combinators,

3. Another recent library built by Peter Thompson to represent ΔQ probability distributions using piece-
wise polynomials, which should provide high-fidelity CDFs.

https://en.wikipedia.org/wiki/Maximum_segment_size
https://en.wikipedia.org/wiki/Maximum_segment_size
https://github.com/DeltaQ-SD/pnsol-deltaq-clone
https://github.com/DeltaQ-SD/Artjoms
https://arxiv.org/pdf/2308.10654v1.pdf
https://arxiv.org/pdf/2308.10654v1.pdf
https://github.com/DeltaQ-SD/dqsd-piecewise-poly
https://github.com/DeltaQ-SD/dqsd-piecewise-poly
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Library 2 was used to express the outcome diagram depicted above using so-called O language, but while
we were able to encode the model itself, the resulting computation of CDFs for composite expressions re-
sulting from convolution of atomic expressions turned out to be unusable, yielding CDFs with accumulated
probability lower than 1 even though we did not model any loss. Library 3, although the most promising to
provide accurate models, turned out to be unsatisfactory as we were not able to produce proper numerical
representations of a CDF for more complex expressions.

Using code from library 1, we were able to write the following ΔQ expressions to represent our Cardano
model:

oneMTU =
fromQTA @SimpleUniform

[(0, 0), (1 % 3, 0.012), (2 % 3, 0.069), (3 % 3, 0.268)]
blockBody64K =

fromQTA @SimpleUniform
[(0, 0), (1 % 3, 0.024), (2 % 3, 0.143), (3 % 3, 0.531)]

headerRequestReply = oneMTU � oneMTU -- request/reply
bodyRequestReply = oneMTU � blockBody64K -- request/reply
oneBlockDiffusion = headerRequestReply � bodyRequestReply

combine [(p, dq), (_, dq')] = (�) (toRational $ p / 100) dq dq'
combine ((p, dq) : rest) = (�) (toRational $ p / 100) dq (combine rest)

multihops = (`multiHop` oneBlockDiffusion) <$> [1 ..]

pathLengthsDistributionDegree15 =
[0.60, 8.58, 65.86, 24.95]

hopsProba15 = zip (scanl1 (+) pathLengthsDistributionDegree15 <> [0]) multihops
deltaq15 = combine hopsProba15

Then computing the empirical CDF over 5000 different random samples yield the following graph:

Figure 4: Praos ΔQ Model CDF
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To calibrate our model, we have computed an empirical distribution of block adoption time1 observed on
the mainnet over the course of 4 weeks (from 22nd February 2024 to 18th March 2024), as provided by
https://api.clio.one/blocklog/timeline/. The raw data is provided as a file with 12 millions entries similar to:

9963861,117000029,57.128.141.149,192.168.1.1,570,0,60,30
9963861,117000029,57.128.141.149,192.168.1.1,540,0,60,40
9963861,117000029,158.101.97.195,150.136.84.82,320,0,10,50
9963861,117000029,185.185.82.168,158.220.80.17,610,0,50,50
9963861,117000029,74.122.122.114,10.10.100.12,450,0,10,50
9963861,117000029,69.156.16.141,69.156.16.141,420,0,10,50
9963861,117000029,165.227.139.87,10.114.0.2,620,10,0,70
9963861,117000029,192.99.4.52,144.217.78.44,460,0,10,100
9963861,117000029,49.12.89.235,135.125.188.228,550,0,20,50
9963861,117000029,168.119.9.11,3.217.90.52,450,150,10,50
...

Each entry provides:

• Block height,
• Slot number,
• Emitter and receiver’s IP addresses,
• Time (in ms) to header announcement,
• then additional time to fetch header,
• time to download block,
• and finally time to adopt a block on the receiver.

Therefore the total time for block diffusion is the sum of the last 4 columns.

This data is gathered through a network of over 100 collaborating nodes that agreed to report various
statistics to a central aggregator, so it is not exhaustive and could be biased. The following graph compares
this observed CDF to various CDFs for different distances (in the graph sense, e.g. number of hops one need
to go through from an emitting node to a recipient node) between nodes.

While this would require some more rigorous analysis to be asserted in a sound way, it seems there is a
good correlation between empirical distribution and 1-hop distribution, which is comforting as it validates
the relevance of the model.

4.1.2 Peras ΔQ model - blocks

Things to take into account for modeling Peras:

• Impact of the size of the certificate: If adding the certificate increases the size of the header beyond the
MSS (or MTU?), this will impact header diffusion.

– We might need to just add a hash to the header (32 bytes) and then have the node request the
certificate, which also increases (full) header diffusion time.

• Impact of validating the certificate: If it is not cheap (e.g. a few ms like a signature verification), this
could also lead to an increase in block adoption time as a node receiving a header will have to add more
time to validate it before sharing it with its peers.

1This data was kindly provided by Markus Gufler

https://www.linkedin.com/in/markus-gufler


4 NETWORK PERFORMANCE ANALYSIS 18

Figure 5: Multiple hops & empirical CDF

• There might not be a certificate for each header, depending on the length of the rounds. Given round
length R in slots and average block production length S, then frequency of headers with certificate is
S/R.

– The model must take into account different paths for retrieving a header, one with a certificate
and one without.

• Diffusion of votes and certificates does not seem to have other impacts on diffusion of blocks: e.g. just
because we have more messages to handle and therefore we consume more bandwidth between nodes,
this could lead to delays for block propagation, but it seems there is enough bandwidth (in steady
state, perhaps not when syncing) to diffuse both votes, certificates, transactions, and blocks without
one impacting the other.

The following diagram compares the ΔQ distribution of block diffusion (for 4 hops) under different assump-
tions:

1. Standard block without a certificate,
2. Block header points to a certificate.

Certificate validation is assumed to be a constant 50ms.

Obviously, adding a round-trip network exchange to retrieve the certificate for a given header degrades the
“timeliness” of block diffusion. For the case of 2500 nodes with average degree 15, we get the following
distributions, comparing blocks with and without certificates:

Depending on the value of 𝑈 , the round length, not all block headers will have a certificate and the ratio
could actually be quite small, e.g. if 𝑇 = 60 then we would expect 1/3rd of the headers to have a certificate
on average. While we tried to factor that ratio in the model, that is misleading because of the second order
effect an additional certificate fetching could have on the whole system: More delay in the block diffusion
process increases the likelihood of forks which have an adversarial impact on the whole system, and averaging
this impact hides it.

In practice, cardano-node uses network-level pipelining to avoid having to request individually every
block/header: e.g. when sending multiple blocks to a peer a node will not wait for its peer’s request and will



4 NETWORK PERFORMANCE ANALYSIS 19

Figure 6: Impact of certificate
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Figure 7: Diffusion with and without certificate
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keep sending headers as long as not instructed to do otherwise.

This is not to be confused with consensus pipelining which streamlines block headers diffusion from upstream
to downstream peers before waiting for full block body validation.

4.1.3 Conclusion

This analysis demonstrates that Peras certificates cannot be on the critical path of block headers diffusion
lest we run the risk of increased delays in block diffusion and number of forks. Certificates either have to be
small enough to not require an additional round-trip to transmit on top of the block header, or be part of
the block body. Note that in the latter case the certificates should also be relatively small as there is limited
space available in blocks.

4.2 Votes & certificates diffusion
Detailed analysis of votes and certificates diffusion is still ongoing and will be reported in a future document.
Some preliminary discussions with PNSol allowed us to identify the following points to consider:

• The vote diffusion will very likely be unproblematic on “sunny days”, so the modeling and thinking
effort should be focused on “rainy days”, e.g. what happens under heavy load, e.g. CPU load (also
possibly network load?). These are the circumstances into which backpressure should be applied.

• Some key questions to answer to:
– How much computation do we do on each vote?
– How much computation do we do on each certificate?
– What kind of backpressure do we need to bake in?

• An interesting observation: We could build certificates to reduce the amount of data transferred,
e.g. trading CPU time (building certificate) for space and network bandwidth consumption.

4.3 Impact on user experience
4.3.1 Model

We could want to model the outcomes of Peras in terms of user experience, e.g. how does Peras impact the
user experience? From the point of view of the users, the thing that matters is the settlement time of their
transactions: How long does it take for a transaction submitted to be settled, e.g. to have enough (how much?)
guarantee that the transaction is definitely part of the chain?

From this point of view, the whole path from transaction submission to observing a (deep enough) block
matters, which means we need to take into account in our modeling the propagation of the transaction
through the mempools of various nodes in the network until it reaches a block producer. This also means we
need to take into account the potential delays incurred in that journey that can occur because of mempool
congestion in the system: When the mempool of a node is full, it will not pull more transactions from the
peers that are connected to it.

The following diagram illustrates the “happy path” of a transaction until the block its part of gets adopted
by the emitting node, in Praos.

sequenceDiagram
actor Alice
participant N1 as Node1
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participant N2 as Node2
participant N3 as Node3
participant BP as Minter

N2 -->> +N1: Next tx
Alice ->> N1: Post tx
N1 ->> +N2: Tx id
N2 ->> +N1: Get tx
N1 ->> +N2: Send tx
BP -->> +N2: Next tx
N2 ->> +BP: Tx id
BP ->> +N2: Get tx
N2 ->> +BP: Send tx
BP ->> BP: Mint block
N2 ->> +BP: Next block
BP ->> N2: Block header
N2 ->> BP: Get block
BP ->> N2: Send block
N1 ->> +N2: Next block
N2 ->> N1: Block header
N1 ->> N2: Get block
N2 ->> N1: Send block
N1 -->> Alice: Tx in block

This question is discussed in much more detail in the report on timeliness and should be considered outside
of the scope of Peras protocol itself.

5 Property-based testing with state-machine based QuickCheck
The quickcheck-dynamic Haskell package enables property-based testing of state machines. It is the primary
testing framework used for testing the Peras implementations in Haskell and Rust. Eventually, the dynamic
model instances used in quickcheck-dynamic will be generated directly from the Agda specification of Peras
using agda2hs.

Testing that uses the standard (non-dynamic) quickcheck package is limited to the JSON serialization tests,
such as golden and roundtrip tests and round-trip tests.

5.1 Praos properties
Praos NodeModel and NetworkModel test the state transitions related to slot leadership and forging blocks.
They can be used with the Haskell node and network implemented in peras-iosim, or the Rust node
and network implementation in peras-rust. This dual-language capability demonstrated the feasibility
of providing dynamic QuickCheck models for language-agnostic testing. The properties tested are that the
forging rate of a node matches the theoretical expectation to within statistical variations and that, sufficiently
after genesis, the nodes in a network have a common chain-prefix.

https://docs.google.com/document/d/1B42ep9mvP472-s6p_1qkVmf_b1-McLNPyXGjGHEVJ0w/edit
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5.2 Peras properties
A quickcheck-dynamic model was created for closer and cleaner linkage between code generated by agda2hs
and Haskell and Rust simulations. The model has the following features:

The “idealized” votes, certificates, blocks, and chains of the QuickCheck model are separated from “realized”
ones generated by agda2hs and used in the simulations. The idealized version ignores some details like
signatures and proofs. It is possible to remove this separation between ideal and real if behaviors are fully
deterministic (including the bytes of signatures and proofs). However, this prototype demonstrates the
feasibility of having a slightly more abstract model of a node for use in Test.QuickCheck.StateModel.

The NodeModel has sufficient detail to faitfully represents Peras protocol. Ideally, this would be generated
directly by agda2hs. This instance of StateModel uses the executable specification for state transitions and
includes generators for actions, constrained by preconditions.

data NodeModel = NodeModel { ... }

instance StateModel NodeModel where
data Action NodeModel a where

Initialize :: Protocol -> PartyId {- i.e., the owner of the node -} -> Action NodeModel ()
ATick :: IsSlotLeader -> IsCommitteeMember -> Action NodeModel [MessageIdeal]
ANewChain :: ChainIdeal -> Action NodeModel [MessageIdeal]
ASomeCert :: CertIdeal -> Action NodeModel [MessageIdeal]
ASomeVote :: VoteIdeal -> Action NodeModel [MessageIdeal]

arbitraryAction = ...
precondition = ...
initialState = ...
nextState = ...

The executable specification for the node model is embodied in a typeclass PerasNode representing the ab-
stract interface of nodes. An instance (Monad m, PerasNode n m) => RunModel NodeModel (RunMonad
n m) executes actions on a PerasNode and checks postconditions. This also could be generated by agda2hs
from the specification.

class Monad m => PerasNode a m where
newSlot :: IsSlotLeader -> IsCommitteeMember -> a -> m ([Message], a)
newChain :: Chain -> a -> m ([Message], a)
...

For demonstration purposes, an instance PerasNode ExampleNode implements a simple, intentionally
buggy, node for exercising the dynamic logic tests. This could be a full Haskell or Rust implementation, an
implementation generated via agda2hs from operational (executable) semantics in Agda, etc.

data ExampleNode = ExampleNode { ... }

instance PerasNode ExampleNode Gen where
...

The example property below simply runs a simulation using ExampleNode and checks the trace conforms to
the executable specification.

https://github.com/input-output-hk/peras-design/blob/4bc364f52dd33665cbb13d03d7ca16efea98f4ee/peras-quickcheck/src/Peras/OptimalModel.hs#L1
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propSimulate :: (Actions NodeModel -> Property) -> Property
propSimulate = forAllDL simulate

simulate :: DL NodeModel ()
simulate = action initialize >> anyActions_

-- | Act on the example node.
propOptimalModelExample :: Actions NodeModel -> Property
propOptimalModelExample actions = property . runPropExampleNode $ do

void $ runActions actions
assert True

-- | Test a property in the example node.
runPropExampleNode :: Testable a => PropertyM (RunMonad ExampleNode Gen) a -> Gen Property
runPropExampleNode p = do

Capture eval <- capture
flip evalStateT def . runMonad . eval $ monadic' p

Because the example node contains a couple of intentional bugs, one expects the test to fail. Shrinking reveals
a parsimonious series of actions that exhibit one of the bugs.

spec :: Spec
spec = describe "Example node" . prop "Simulation respects model"

. expectFailure $ propSimulate propOptimalModelExample

$ cabal run test:peras-quickcheck-test -- --match "/Peras.OptimalModel/Example node/Simulation respects model/"

Peras.OptimalModel
Example node

Simulation respects model [�]
+++ OK, failed as expected. Assertion failed (after 4 tests and 1 shrink):
do action $ Initialize (Peras {roundLength = 10, quorum = 3, boost = 0.25}) 0

action $ ANewChain [BlockIdeal {hash = "92dc9c1906312bb4", creator = 1, slot = 0, cert = Nothing, parent = ""}]
action $ ATick False True
pure ()

Finished in 0.0027 seconds
1 example, 0 failures

5.3 Relating test model to formal model
The team has been working with Quviq to provide assistance and expertise on tighter integration between
the Agda specification and the quickcheck-dynamic model. This work resulted in the development of a
prototype that demonstrates the feasibility of generating the quickcheck-dynamic model from the Agda
specification, as described in Milestone 1 of the Statement of Work.

The following picture summarizes how the various parts of the testing framework for Peras are related:

The key points of this line of work are:

https://drive.google.com/file/d/1vDfwiR24t3K6INkabwR43A4Ryc-j7SzG/view
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Figure 8: Agda-QuickCheck Integration

1. While both written in Agda, we differentiate the Formal model from the Test model as they serve
different purposes. More importantly, we acknowledge the fact there be more than one Test model for
a given Formal model, depending on the level of abstraction and the properties we want to test,

2. The Formal model is the actual specification of the protocol and is meant to write proofs related to
the protocol (e.g the usual blockchain properties like chain growth, chain quality, etc. and the specific
properties of Peras). Ideally, this model should be part of the research work and written in close
collaboration with them,

3. The Test model describes some relevant behavior of the system for the purpose of asserting a liveness
or safety property, in the form of a state machine relating: A state data type, some signals sent to the
SUT for testing purpose, and a step function describing possible transitions of the system,

4. The Test model’s soundness w.r.t the Formal model is proven through a soundness theorem that guar-
antees each sequence of transition in the Test model can be mapped to a valid sequence of transitions
in the Formal model,

5. Using agda2hs Haskell code is generated from the Test model and integrated in a small hand-written
wrapper complying with quickcheck-dynamic API,

6. Note the perform function is not generated because it’s specific to the actual implementation of the
System-Under-Test (SUT).

The provided models are very simple toy examples of some chain protocol as the purpose of this first step
was to validate the approach and identify potential issues. In further steps, we need to:

1. Work on a more complex and realistic Test model checking some core properties of the Peras protocol,
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2. Ensure the Formal model’s semantics is amenable to testability and proving soundness of the Test
model.

6 Simulations
In order to test the language-neutrality of the testing framework for Peras, we developed both Haskell-based
and Rust-based simulations of the Peras and Praos protocols.

6.1 Haskell-based simulation
The initial phase of the first Peras PI’s work on simulation revolves around discovery. This involves several
key tasks, including prototyping and evaluating different simulation architectures, investigating simulation-
based analysis workflows, assessing existing network simulation tools, establishing interface and serialization
formats, eliciting requirements for both simulation and analysis purposes, and gaining a deeper understanding
of Peras behaviors. The first prototype simulation, developed in Haskell, is closely intertwined with the Agda
specification. This integration extends to the generation of types directly from Agda. Subsequent work
will migrate a significant portion of the Peras implementation from Haskell to functions within the Agda
specification, which will necessitate reconceptualizing and refining various components of the simulation.

The Peras simulation employs language-agnostic components that collaborate seamlessly (see figure below).
This includes node implementations in Haskell, with Rust implementations forthcoming. Additionally, the
native-Haskell simulation utilizes the IOSim packages in a manner consistent with QuickCheck tests in
peras-quickcheck, which also supports a Foreign Function Interface (FFI) connection to Netsim and
peras-rust. The simulation setup also encompasses statistically designed experiments, the ability to in-
ject rare events or adversarial behaviors, tools for generating networks and scenarios, as well as analysis and
visualization tools to interpret the simulation results. A significant aspect of the workflow is geared towards
analysis. This involves an observability approach to gathering metrics, utilization of language-independent
file formats, visualization of network structures, and statistical analyses primarily conducted using R.

The IOSim-based Haskell simulator for Peras currently provides a provisional implementation of the Peras
protocol’s intricacies, including committee selection, voting rounds, and cool-down periods. Presently, the
fidelity of the simulation to the Peras protocol is moderate, while the fidelity at the network layer remains
low. Substantial refactoring and refinement efforts are deemed necessary moving forward to enhance the
simulation’s accuracy and effectiveness.

The simulation implements the February version of the Peras protocol, illustrated in the UML sequence
diagrams below for node behavior, and the activity diagram for node state transitions. Nodes receive messages
for entering a new slot or new voting round; they also receive new preferred chains or votes from their
upstream peers via messages. When they vote, forge blocks, or adopt a new preferred chain, they notify their
downstream peers via messages.

The detailed behavior of the February protocol differs somewhat from later versions such as the March
protocol.

6.1.1 Design

The architecture, design, and implementation of the Haskell-based peras-iosim package evolved significantly
during Peras’s first PI, so here we just summarize the software approach that the series of prototypes has

https://hackage.haskell.org/package/io-classes
https://github.com/input-output-hk/ce-netsim
https://www.r-project.org/
https://en.wikipedia.org/wiki/Unified_Modeling_Language
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Figure 9: Workflow for simulation experiments
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Figure 10: UML sequence diagram for the February version of the Peras protocol
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Figure 11: UML activity diagram for the February version of the Peras protocol

converged upon.

6.1.1.1 IOSim The simulator initially relied heavily on io-sim and io-classes as it was inspired by
similar work based on IOSim, like hydra-sim: Each node would be a separate actor, possibly running several
threads. We then moved to a much more lightweight use of IOSim’s capabilities.

First of all, IOSim’s implementation is currently single-threaded with a centralized scheduler that handles the
simulated threads. Thus, IOSim does not provide the speed advantages of a parallel simulator. However, it
conveniently provides many of the commonly used MTL (monad transformer library) instances typically used
with IO or MonadIO but in a manner compatible with a simulation environment. For example, threadDelay in
IOSim simulates the passage of time whereas in IO it blocks while time actually passes. Furthermore, the STM
usage in earlier Peras prototypes was first refactored to higher-level constructs (such as STM in the network
simulation layer instead of in the nodes themselves) but then finally eliminated altogether. The elimination
of STM reduces the boilerplate and thread orchestration in QuickCheck tests and provides a cleaner testing
interface to the node, so that interface is far less language dependent. Overall, the added complexity of
STM simply was not justified by requirements for the node, since the reference node purposefully should
not be highly optimized. Additionally, IOSim’s event logging is primarily used to handle logging via the
contra-tracer package. IOSim’s MonadTime and MonadTimer classes are used for managing the simulation
of the passage of time.

6.1.1.2 Node interface The node interface has evolved towards a request-response pattern, with sev-
eral auxiliary getters and setters. This will further evolve as alignment with the Agda-generated code and
QuickCheck Dynamic become tighter. At this point, however, the node interface and implementation is
sufficient for a fully faithful simulation of the protocol, along with the detailed observability required for
quantifying and debugging its performance.

class PerasNode a where
getNodeId :: a -> NodeId
getOwner :: a -> PartyId
getStake :: a -> Coin
setStake :: a -> Coin -> a
getDownstreams :: a -> [NodeId]

https://github.com/input-output-hk/hydra-sim
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getPreferredChain :: a -> Chain
getPreferredVotes :: a -> [Vote]
getPreferredCerts :: a -> [Certificate]
getPreferredBodies :: a -> [BlockBody]
handleMessage :: Monad m => a -> NodeContext m -> InEnvelope -> m (NodeResult, a)
stop :: Monad m => a -> NodeContext m -> m a

Honest versus adversarial nodes can be wrapped in the existential type SomeNode. The NodeResult captures
the messages emitted by the node in response to the message (InEnvelope) that it receives, specifies the lower
bound on the time of the node’s next activity (wakeup), and collects metrics regarding the node’s activity:

data NodeResult = NodeResult
{ wakeup :: UTCTime
, outputs :: [OutEnvelope]
, stats :: NodeStats
}

data NodeStats = NodeStats
{ preferredTip :: [(Slot, BlockHash)]
, rollbacks :: [Rollback]
, ...
}

The NodeContext includes critical environmental information such as the current time and the total stake in
the system:

data NodeContext m = NodeContext
{ protocol :: Protocol
, totalStake :: Coin
, slot :: Slot
, clock :: UTCTime
, traceSelf :: TraceSelf m
}

6.1.1.3 Auxiliary data structures An efficient Haskell simulation requires auxiliary data structures to
index the blocks, votes, and certificates in the block tree, to memoize quorum checks, etc. A node can use
a small state machine for each channel to an upstream node and supplement that with its own global state
machine.

data ChainState = ChainState
{ tracker :: ChainTracker
, channelTrackers :: Map NodeId ChainTracker
, chainIndex :: ChainIndex
}

Each ChainTracker records node- or peer-specific states.

data ChainTracker = ChainTracker
{ preferredChain :: Chain
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, preferredVoteHashes :: Set VoteHash
, preferredCertHashes :: Set CertificateHash
, missingBodies :: Set BodyHash
, latestSeen :: Maybe Certificate
, latestPreferred :: Maybe Certificate
}

An index facilitates efficient lookup and avoids recomputation of quorum information.

data ChainIndex = ChainIndex
{ headerIndex :: Map BlockHash Block
, bodyIndex :: Map BodyHash BlockBody
, voteIndex :: Map VoteHash Vote
, certIndex :: Map CertificateHash Certificate
, votesByRound :: Map RoundNumber (Set VoteHash)
, certsByRound :: Map RoundNumber (Set VoteHash)
, weightIndex :: Map BlockHash Double
}

Combined, these types allow a node to track the information it has sent or received from downstream or
upstream peers, to eliminate recomputing chain weights, to avoid asking multiple peers for the same informa-
tion, and to record its and its peers’ preferred chains, votes, and certificates. Note that this instrumentation
and optimization does not affect the simulated performance of the node because that performance is tracked
via a cost model, regardless of the performance of the simulation code.

6.1.1.4 Observability Tracing occurs via a TraceReport which records ad-hoc information or the struc-
tured statistics.

data TraceReport
= TraceValue

{ self :: NodeId
, slot :: Slot
, clock :: UTCTime
, value :: Value
}

| TraceStats
{ self :: NodeId
, slot :: Slot
, clock :: UTCTime
, statistics :: NodeStats
}

The value in the interface above can hold the result of a single “big step”, recorded in a StepResult of
outputs and events.

data StepResult = StepResult
{ stepTime :: UTCTime
, stepOutputs :: [OutEnvelope]
, stepEvents :: [Event]
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}

data Event
= Send { ... }
| Drop { ... }
| ...
| Trace Value

The peras-iosim executable supports optional capture of the trace as a stream of JSON objects. In experi-
ments, jq is used for ad-hoc data extraction and mongo is used for complex queries. The result is analyzed
using R scripts.

6.1.1.5 Message routing The messaging and state-transition behavior of the network of nodes can be
modeled via a discrete event simulation (DES). Such simulations are often parallelized (PDES) in order to
take advantage of the speed gains possible from multiple threads of execution. Otherwise, a single thread
must manage routing of messages and nodes’ computations: for large networks and long simulated times,
the simulation’s execution may become prohibitively slow. Peras simulations are well suited to conservative
PDES where strong guarantees ensure that messages are always delivered at monotonically non-decreasing
times to each node; the alternative is an optimistic PDES where the node and/or message queue states have
to be rolled back if a message with an out-of-order timestamp is delivered. A PDES for Peras can be readily
constructed if each time a node emits a message it also declares a guarantee that it will not emit another
message until a specified later time. Such declarations provide sufficient information for its downstream peers
to advance their clocks to the minimum timestamp guaranteed by their upstream peers: i.e., when a node
sees empty incoming message queues from all of its upstream peers, it can compute a safe time to advance
forward, thus avoiding race conditions or deadlock. Hence, each node can run its own thread and have
upstream and downstream message queues directly connected to its peers, all without the centrally managed
message routing that would form a potential bottleneck for scaling performance. The experiments described
later in this document indicate that PDES is not needed at this time because simulations execute sufficiently
fast without it and the cpu resources could be better used for running ensembles of simulations in parallel.

That said, it likely is the case that Peras simulations will not need to simulate contiguous weeks or months
of network operation, so at this point peras-iosim uses a centrally managed time-ordered priority queue for
message routing. Also, instead of each node running autonomously in its own thread, nodes are driven by the
receipt of a message and respond with timestamped output messages and a “wakeup” timestamp bounding
the node’s next activity. If long-running simulations are later required, the node design is consistent with later
upgrading the message-routing implementation to a conservative PDES and operating each node in its own
thread in a fully parallelized or distributed simulation. The basic rationales against long-running simulations
are (1) that ΔQ analyses are better suited for network traffic and resource studies and (2) simulation is
best focused on the rare scenarios involving forking and cool-down, which occur below Cardano’s Ouroboros
security parameter 𝑘 of 2160 blocks (approximately thirty-six hours).

6.1.1.6 Sync protocol Five designs for node sync protocol were considered.

1. Simple handoffs between client and server
• Closely corresponds to Agda Message
• Client could use blocking calls to tidily process messages
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• FetchChain does not stream, so another FetchChain request must be made for each subsequent
block header in the new chain

• Cannot handle FetchVotes or FetchBlocks when multiple hashes are provided, so all queries
must be singletons

2. Messy multiplexing
• Similar to how early prototypes used incoming and outgoing STM channels
• Incoming messages will not be in any particular order
• Client needs to correlate what they received to what they are waiting for, and why - maybe use

futures or promises with closures
3. Sequential mini-protocols

• Reminiscent of the Ouroboros design currently in production
• Client needs to Cancel and re-query when they want a different type of information, a pattern

which differs from real nodes’ simple abandonment of responses that become irrelevant
4. Parallel mini-protocols

• Separate threads for each type of sync (header, vote, block)
• Client needs to orchestrate intra-thread communication

5. Constrained fetching
• Supports the most common use case of fetching votes and bodies right after a new header is

received
• Reduces to a request/replies protocol if the protcol’s state machine is erased or implicit

Design 1 Design 2 Design 3 Design 5

These highlight some key design issues:

• FetchVotes and FetchBlocks trigger multiple responses, as FetchChain may also do,
• Three types of information are being queried (headers, votes, blocks) in only a semi-predictable se-

quence,
• The DoS attack surface somewhat depends upon when the node yields agency to its peers,
• Pull-based protocols involve more communication than push-based ones.

The current implementation uses a simple request/reply protocol that avoids complexity, but is not explicitly
defined as a state machine. This is actually quite similar to the fifth design, but with no Next request. It
abandons the notion of when the client or server has agency. If the client sends a new request before the
stream of responses to the previous request is complete, then responses will be multiplexed.
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6.1.2 Experiments

The simulation experiments below use slightly different versions of the ever-evolving Haskell package
peras-iosim, which relies on the types generated by agda2hs, but with the now slightly outdated February
version of the Peras protocol. Visualization was performed with the GraphViz tool, and statistical and data
analysis was done with R.

6.1.2.1 Block production The “block production” experiment laid the groundwork for testing simulated
block-production rates using QuickCheck properties. Because the VRF determines which slots a node leads
and forges a block, the production is sporadic and pseudo-random. Heretofore, the Peras simulation has used
a simple probabilistic approximation to this process: a uniformly distributed random variable is selected and
the node produces a block in the slot if that variable is less than the probability 𝑝 = 1 − (1 − 𝑓)(𝑠𝑛/𝑠𝑡),
where $f is the active slot coefficient and 𝑠𝑛 and 𝑠𝑡 are the stake held by the node and the whole network,
respectively.

The experiment involved running 1000 simulations of two hours of block production for a node with 𝛼 = 0.05.
The stake held by the node was randomly chosen in each of the simulations. The plot below shows the
number of blocks produced as a function of the node’s stake. The probability contours in the plot indicate
the theoretical relationship. For example, the 99.9% quantile (indicated by 0.999 in the legend) is expected
to have only 1/1000 of the observations below it; similarly, 90% of the observations should lie between the
5% and 95% contours. The distribution of the number of blocks produced in the experiment appears to obey
the theoretical expectations.

Although the above plot indicates qualitative agreement, it is somewhat difficult to quantify the level of
agreement because stake was varied in the different simulations. The following histogram shows another
view of the same data, where the effect of different stake is removed by applying the binomial cumulative
probability distribution function (CDF) for 𝛼 = 0.05 to the data. Theoretically, this transformed distribution
should be uniform between zero and one. Once again, the data appears to match expectations.

A Kolmogorov-Smirnov (KS) test quantifies the conformance of the results to such a uniform distribution:

ks.test(results$`Quantile`, "punif", min=0, max=1)

D = 0.023265, p-value = 0.6587
alternative hypothesis: two-sided

The p-value of 66% solidly indicates that the block production count matches our expectation and the
theoretical model.

Because it is slightly inconvenient to embed a KS computation within a QuickCheck property, one can
instead use an approximation based on the law of large numbers. The mean number of blocks produced in
this binomial process should be the number of slots times the probability of producing a block in a slot, 𝑛𝑝,
and the variance should be 𝑛𝑝(1 − 𝑝). The peras-quickcheck module contains the following function in
Data.Statistics.Util:

-- | Check whether a value falls within the central portion of a binomial distribution.
equalsBinomialWithinTails ::

-- | The sample size.
Int ->
-- | The binomial probability.

https://graphviz.org
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Figure 12: Relationship between a node’s stake and the number of blocks it produces
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Figure 13: Empirically observed quantiles of binomial distribution in block-production experiment
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Double ->
-- | The number of sigmas that define the central acceptance portion.
Double ->
-- | The actual observation.
Int ->
-- | Whether the observation falls within the central region.
Bool

The Peras continuous-integration tests are configured to require that the observed number of blocks matches
the theoretical value to within three standard deviations. Practically, this means that the test measurement
is a random variable that will fall outside the three � range about once in every ten or so invocations of the
CI (continuous integration) tests, since each invocation executes 100 tests.

6.1.2.2 Network and Praos chain generation The simulation experiments generate a reasonable but
random topology of peers, with a specified number of upstream and downstream nodes from each node.
Slot leadership is determined according to the procedure outlined in the previous section above. Both
the peras-iosim Haskell package and the peras_topology Rust package can generate these randomized
topologies and store them in YAML files. The peras-iosim package generates valid Praos chains.

Example chain Example topology

6.1.2.3 February version of Peras A semi-realistic set of protocol parameters and network configura-
tion was set for a 100-node network with a mean committee size of 10. Committee selection in the following
simulation was set by limiting each node to a maximum of one vote. (However, the March version of the
protocol clarifies that a node may have more than one vote.) The probability of becoming a member of the
voting committee in a given round is
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𝑃 = 1 − (1 − 𝑝𝑙)𝑠

given

𝑝𝑙 = (1 − 1/𝑐)(𝑐/𝑡)

where 𝑠 is the node’s stake, 𝑡 is the total stake in the system, and 𝑐 is the mean committee size.

The following figure compares similar Praos and Peras chains, highlighting how the latter’s voting boost
affects the choice of preferred chain. The simulation involved 100 nodes and a mean committee size of 10
nodes; the active slot coefficient was set to 0.25 in order to provoke more frequent forking than would normally
be observed. The voting boost is a modest 10% per vote.

Figure 14: Comparison between Praos and Peras chains

The difference is fork adoption results from more Peras votes being received by the lower chain than by the
upper one, as illustrated below.

Statistics for rollbacks, such as the ones shown below, are measured in these simulations to quantify the
number of slots or blocks that are reverted: such can be used to compute the likelihood of a transaction
appearing in a block that is later rolled back. The diagram below shows a proof-of-principle measurement
of rollback lengths in an ensemble of simulations. The horizontal axis shows the number of slots rolled back
during the course of the whole simulation, and the vertical axis shows the corresponding number of blocks
rolled back: the marginal histograms show the empirically observed frequency of each. (Note that the point
indicating the number of slots vs blocks rolled back do not represent single rollbacks of that many slots or
blocks: instead a simulation might have had many rollbacks and the slots and blocks listed are the total
among the rollbacks. Also note that the active slot coefficient was set to a high value in order to provoke
more forking.) Although the voting boost weight is varied among these simulations, it has almost no effect
on the rollback statistics.

Findings from the simulation runs highlight the impracticality of blindly running simulations with realistic
parameters and then mining the data:

• The simulation results are strongly dependent upon the speed of diffusion of messages through the
network, so a moderately high fidelity model for that is required.



6 SIMULATIONS 39

Figure 15: Detail of Peras and Praos chain comparison

• Both Peras and Praos are so stable that one would need very long simulations to observe naturally
occurring forks of more than one or two blocks.

– Only in cases of very sparse connectivity or slow message diffusion are longer forks seen.
– Peras quickly stabilizes the chain at the first block or two in each round, so even longer forks

typically never last beyond then.
• Hence, even for honest nodes, one needs a mechanism to inject rare events such as multi-block forks,

so that the effect of Peras can be studied efficiently.

6.1.2.4 “Split brain” This first “split-brain” experiment with peras-iosim involved running a net-
work of 100 nodes with fivefold connectivity for 15 minutes, but where nodes are partitioned into two non-
communicating sets between the 5th and 10th minute. The nodes quickly establish consensus after genesis,
but split into two long-lived forks after the 5th minute; shortly after the 10th minute, one of the forks is
abandoned as consensus is reestablished.

Nodes were divided into two “parities” determined by whether the hash of their name is an even or odd
number. When the network is partitioned, only nodes of the same parity are allowed to communicate with
each other: the Haskell module Peras.IOSIM.Experiment.splitBrain implements the experiment and is
readily extensible for defining additional experiments.

Both the Praos and Peras protocols were simulated, with the following Peras parameters for creating a
scenario that exhibits occasional cool-down periods and a strong influence of the voting boost.

https://github.com/input-output-hk/peras-design/blob/65d8a98817df119b3902e43e5acca86fdcca6f92/peras-iosim/src/Peras/IOSim/Experiment.hs#L1
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Figure 16: Example of rollback statistics
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activeSlotCoefficient: 0.10
roundDuration: 50
pCommitteeLottery: 0.00021
votingBoost: 0.25
votingWindow: [150, 1]
votingQuorum: 7
voteMaximumAge: 100
cooldownDuration: 4
prefixCutoffWeight: 10000000

The control (“normal”) case is a network that does not experience partitioning:

randomSeed: 13234
peerCount: 100
downstreamCount: 5
maximumStake: 1000
messageDelay: 350000
endSlot: 1500
experiment:

tag: NoExperiment

The treatment (“split”) case experiences partitioning between the 5th and 10th minutes:

randomSeed: 13234
peerCount: 100
downstreamCount: 5
maximumStake: 1000
messageDelay: 350000
endSlot: 1500
experiment:

tag: SplitBrain
experimentStart: 500
experimentFinish: 1000

In the Peras simulation, the chain that eventually became dominant forged fewer blocks during the partition
period, but it was lucky to include sufficient votes for a quorum at slot 503 and that kept the chain out
of the cool-down period long enough to put more votes on the chain, which increased the chain weight. It
appears that that was sufficient for the chain to eventually dominate. Note that multiple small forks occurred
between the time that network connectivity was restored and consensus was reestablished.

Figure 17: Forking and reestablishment of quorum in Peras split-brain experiment
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The primary measurements related to the loss and reestablishment of consensus relate to the length of the
forks, measured in blocks or slots. The table shows the statistics of these forks, of which the Peras case had
several.

Protocol Metric Blocks Slots
Praos Length of discarded chain at slot 1000 68 1000

Length of dominant chain at slot 1000 73 1000
Number of blocks in discarded chain after slot 1000 2

Peras Length of discarded chain at slot 1000 75 1000
Length of dominant chain at slot 1000 66 1000
Number of blocks in discarded chain after slot 1000 3 137

1 118
1 137
1 141
1 55
1 24
1 18

Number of blocks afters slot 1000 to reach quorum 18 304

The primary findings from this experiment follow.

• The complexity of the forking, voting, and cool-down in the Peras results highlights the need for capable
visualization and analysis tools.

• The voting boost can impede the reestablishment of consensus after a network partition is restored.
• It would be convenient to be able to start a simulation from an existing chain, instead of from genesis.
• VRF-based randomization makes it easier to compare simulations with different parameters.
• Even though peras-iosim runs are not particularly fast, one probably does not need to parallelize

them because typical experiments involve many executions of simulations, which means we can take
advantage of CPU resources simply by running those different scenarios in parallel.

• The memory footprint of peras-iosim is small (less than 100 MB) if tracing is turned off; with tracing,
it is about twenty times that, but still modest.

6.1.2.5 Congestion A coarse study exercised several aspects of peras-iosim in a simulation experiment
involving network congestion: simulation/analysis workflow, scalability and performance, and observability.
A full factorial experiment varied bandwidth and latency on a small network with semi-realistic Peras param-
eters. Each block has its maximum size: i.e., each block is completely full of transactions. There were 250
nodes with fivefold connectivity and a mean of 25 committee members; latency varied from 0.25 s to 1.00 s,
and bandwidth varied from 8 Mb/s to 400 Mb/s, but other parameters remained constant.

The main caveat is that the memory pool and other non-block/non-vote messages were not modeled. Several
findings were garnered from this experiment:

• A threshold is readily detectable at a bandwidth of ~20 Mb/s.
– It is important to realize that this simulation was neither calibrated to realistic conditions nor

validated.
– Much better empirical data inputs for on node processing times (e.g., signature verification, block

assembly, etc.) are needed.
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• Non-block and not-vote messages such as those related to the memory pool must be accounted for in
congestion.

• The existing peras-iosim event logging and statistics system easily supports analyses such as these.

The following diagram shows the cumulative bytes received by nodes as a function of network latency and
bandwidth, illustrating the threshold below which bandwidth is saturated by the protocol and block/vote
diffusion.

Figure 18: Cumulative bytes received by nodes as a function of network latency and bandwidth

6.2 Rust-based simulation
The Rust types for Peras nodes and networks mimic the Haskell ones and the messages conform to the
Agda-generated types. The Rust implementation demonstrates the feasibility of using language-independent
serialization and a foreign-function interface (FFI) for Haskell-based QuickCheck testing of Peras implementa-
tions. In particular, the Rust package serde has sufficiently configurable serialization so that it interoperates
with the default Haskell serializations provided by Data.Aeson. (The new agda2rust tool has not yet reached
a stable release, but it may eventually open possibilities for generating Rust code from the Agda types and
specification.) A Rust static library can be linked into Haskell code via Cabal configuration.

The Rust node generates Praos blocks according to the slot-leadership recipe. The Rust network uses the
Innovation Team’s new network simulation ce-netsim for transportation block-production and preferred-chain

https://github.com/input-output-hk/ce-netsim
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messages among the nodes.

The key findings from Rust experiments follow.

• It is eminently practical to interface non-Haskell code to QuickCheck Dynamic via language-independent
serialization and a foreign-function interface.

• It is also possible to co-design Rust and Haskell code for Peras so that the implementations mirror each
other, aside from language-specific constructs. This might result in not employing the advanced and
idiosyncratic features of these two languages, however.

• The ce-netsim architecture and threading model is compatible with Peras simulations, even ones linked
to quickcheck-dynamic test via FFI.

6.3 Overall findings from simulation studies
6.3.1 Simulation results

• Both Peras and Praos are so stable that one would need very long simulations to observe forks of more
than one or two blocks.

– Only in cases of very sparse connectivity or slow message diffusion are longer forks seen in honest
networks.

– Peras quickly stabilizes the chain at the first block or two in each round, so even longer forks
typically never last beyond then.

– Hence, even for honest nodes, we need a mechanism to inject rare events such as multi-block forks,
so that the effect of Peras can be studied efficiently.

• The voting boost can impede the reestablishment of consensus after a network partition is restored.
• The simulation results are strongly dependent upon the speed of diffusion of messages through the

network, so a moderately high fidelity model for that is required.
• Congesting experiments can detect when vote-related messages impact node performance.

6.3.2 Simulation experiments

• Single-threaded simulations of 1000s of nodes for one or more simulated days are feasible.
• The parameter space is large enough (approximately ten dimensions) that statistically designed exper-

iments (latin hypercubes, orthogonal arrays, or hybrids) and importance sampling will be needed to
focus computational resources on the performance regimes of most interest.

• Finely crafted, demonstrative simulation scenarios are needed for highlighting the value added by Peras.
• The complexity of the forking, voting, and cool-down in the Peras results highlights the need for capable

visualization and analysis tools.
• More data on CPU usage for various node activities (verifying signatures, forging blocks, etc.) is needed

for realistic simulation of node resource usage.
– The performance reports being prepared for the Conway era have some of this information, but it

is not quite at the granularity needed for a simulation.

6.3.3 Simulator design

• There is little point in expending the extra effort to develop multi-threaded, parallel network simulations
because CPU resources could instead be devoted to the large ensembles of simulations that will be
needed for some studies.
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– Furthermore, the Ouroboros security parameter of 2160 blocks limits the duration of interesting
simulations.

– However, A conservative parallel discrete event is feasible to implement if higher performance is
needed for the simulation studies.

• Congestion modeling may require representing all message traffic between nodes (not just blocks, votes,
and certificates).

– However, the March version of the Peras protocol imposes a far lighter network load than the
February version.

– Hence, analytic estimates or ΔQ analyses may be sufficient for assessing the message-traffic over-
head resulting from Peras.

• It would be convenient to be able to start a simulation from an existing chain, instead of from genesis.
• Non-block and not-vote messages such as those related to the memory pool must be accounted for in

congestion.
• The following detail for event logging is sufficient for analysis and visualization of the simulations.

– CPU resource consumption.
– Bytes transmitted and received.
– Slot leadership and committee membership.
– Occurrence of rollbacks.
– The sending, receiving, and dropping of messages.

• Language-independent schemas (in YAML or JSON) for scenario definition, network topology, observ-
ability, and visualization create seamless interoperability between Haskell and Rust simulators.

– Query tools such as jq and mongo work well for ad-hoc analysis of the event logs.
– Log analysis and visualization tools can be compatible with Peras observability.

• Haskell
– The agda2hs tool generates Haskell that is usable in simulations and QuickCheck.

∗ The biggest awkwardness is that one has to write some orphan instances (including Arbitrary)
in Haskell instead of in Agda.

– Keeping the exported Haskell implementation “boring” (i.e., avoiding type-level machin-
ery, complex monad transformer stacks, no STM, etc.) facilitates its interoperability with
quickcheck-dynamic and language-independent APIs.

– An efficient Haskell simulation requires auxiliary data structures to index the blocks, votes, and
certificates in the block tree, to memoize quorum checks, etc.

• Rust
– The serde Rust libraries successfully mimic Haskell’s aeson serialization for JSON.
– The serde library also supports serialization as CBOR, though its compatibility with Cardano’s

CBOR serialization has not yet been assessed.
– The agda2rust tool is not sufficiently mature to generate Peras’s Agda types for use in Rust.
– The ce-netsim library is useful for the message-passing portions of Peras simulations written in

Rust.
– Using WASM as a Rust compilation target may enable running serverless simulations in a web

browser.
• IOSim

– IOSim’s single-threaded implementation hinders its usefulness for high performance simulations.
– It is quite awkward to use random numbers (e.g., StatefulGen) within IOSim because it lacks the

requisite monad-transformer instances. The experimental and outdated io-classes-mtl package
does not solve this problem.
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• QuickCheck
– Some tests of node behavior may be statistical, but the current codebase demonstrates how prop-

erties that only hold statistically can be incorporated into continuous-integration (CI) tests.
• Ideally, simulation analysis and visualization tools could be browser-based, so that stakeholders could

explore Peras and build intuition about it without installing any software.

6.3.4 Integration with QuickCheck Dynamic

Now that it has been demonstrated that it is feasible to export Agda types, functions, and QuickCheck dy-
namic models to Haskell for testing, an optimal path forward would be to have those generated types dictate
the public interfaces for node and network simulations (both in Haskell and in Rust). The current simula-
tion codebase is consistent with this test-driven development (TDD) approach and will only require minor
adjustments to yield simulations that are faithful to Peras and that are primarily based on exported Agda
types and functions. The same simulation implementation will both conform to the quickcheck-dynamic
models and the requirement for efficient simulation.

7 Integration into Cardano Node
This section studies the required work and potential impacts of implementing Peras as a core component of
the Cardano node. The main impacts identified are that:

• Peras requires significant changes to message traffic between nodes, with new types of messages and
network protocols,

• It might require changes to the structure of blocks,
• It increases the computational resources used by nodes through the need to produce and validate votes.

7.1 Networking
Peras introduces two new constructs: votes and certificates. Members of the Peras committee cast votes
each voting round, and the votes must be received by a block-producing node before the votes expire. A
certificate memorializes a quorum of votes (approximately 80% of the committee) made in the same round
for a particular block. A certificate must be included in the first block of a cool-down period, though at least
one variant of the protocol envisions each round’s certificate being included regardless of cool-down status.
Nodes syncing from genesis or an earlier point in the chain’s history must be provided the votes or equivalent
certificates in order for them to verify the weight of the chain. Thus, the protocol results in the following
message traffic:

7.1.1 Votes

• Vote messages diffuse votes from voters to the block-producing nodes.
– An upper bound (worst-case scenario) on message traffic is that every vote diffuses to every node.
– Votes would likely be sent via a new mini-protocol very similar to how transactions are propagated:

∗ The downstream peers request list of IDs from upstream peers
∗ They select the ones they do not have in their “mempools” for download
∗ When quorum is reached they stop downloading votes for given round

– Backpressure for a node’s receiving is necessary in order to mitigate DoS attacks that flood a node
with votes.
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– Nodes that have large stake might be allotted several votes. Instead of sending one message per
vote, these could be bundled as a message that indicates the number of votes cast.

– Votes not recorded on the chain or in a certificate need to be kept by the node and persistently
cached if the node is restarted. They might have to be provided to newly syncing nodes.

• It is relatively straightforward to know the size the votes mempool would take
– The size of a vote is likely a couple of hundred bytes.
– Votes have a TTL (parameter max. age 𝐴 of the protocol) which implies there is a strict upper

bound on the overall size of the votes mempool
– There is also a cap on the number of votes per round (quorum parameter 𝜏)
– And it is always possible to trade a bunch of votes with a certificate representing those votes

7.1.2 Certificates

Certificates (or equivalently quorum of votes in a round) have an impact on the chain selection process as
they change the weight:

• Sending a certificate is equivalent to sending a quorum of votes.
– Once a node sees a quorum, it can create and diffuse a certificate so it no longer needs to send

any more votes for the round.
– If non-quorum certificates were to obey monoid laws, then votes could be sent as singleton certifi-

cates that progressively aggregate votes towards a quorum. This use of non-quorum certificates
would reduce message traffic.

– If a certificate for every round is included on the chain, then newly started or syncing nodes need
not request certificates or votes for rounds older than the last certificate recorded on the chain.

– Certificates not recorded on the chain need to be kept by the node and persistently cached in case
the node is restarted. They might have to be provided to newly syncing nodes.

– The size of a certificate is likely a few thousand bytes or more
– Conceptually, diffusion of certificates can be thought as similar to the diffusion of blocks as cer-

tificates are explicitly or implicitly chained together
• Certificates are likely too large to be included in the block header without increasing its size over the

constitutionally-constrained byte limit.
– If the CDDL for blocks were altered, they could be included as a new entry in the block.
– Alternatively, a certificate could be stored as a transaction in the block. Such certificate-

transactions would incur a fee and would also need to be prioritized ahead of transactions in the
memory pool.

• At least conceptually, certificates are fungible: e.g. if I have certificate X for block A and a certificate
Y for block B s.t. A extends B, then I can count the chain from B as having twice the weight which is
equivalent to having a certificate 𝑍 = 𝑋 ∘ 𝑌 .

– This implies that an implementation could choose to merge certificates that are past some thresh-
old, e.g. when enough weight has been accumulated the chances of chain fork are negligible, which
would limit the storage requirements.

– This needs to be validated by researchers and is highly dependent on the particular technology
used to form certificates.

• Creating, and to a lesser extent validating, certificates could be relatively CPU intensive operations.
– This means there is an interesting operational tradeoff between resources, CPU on one hand, and

memory/network bandwidth on the other, that could be used by an implementation adaptively
depending on the environment’s conditions: Share quorum of votes directly if there is no pressure
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on memory and network bandwidth, or spend CPU time to build certificates to reduce footprint.

7.2 Consensus
The node’s chain-selection algorithm will have to be modified to compute chain weight that includes the
boosts from the certificates on the chain. It will also have to do bookkeeping on unrecorded votes and
certificates and adjust the relevant data structures when a new preferred chain is selected.

7.3 Resources
Peras requires several new types of work by the node: votes and certificates must be created, diffused,
persistently cached, and verified. CPU resources for creating a vote are on the order of those used by creating
a signature. Verifying a vote likely will use resources similar to verifying the slot leadership of another node,
since a similar VRF scheme is used for both voting and slot leadership. Resources for creating or verifying
a certificate will depend upon the particular certification scheme selected, for example Approximate Lower
Bounds. The burden of verifying votes might be lessened if the certificates containing them can be built
incrementally and forwarded to downstream peers which will not have to re-verify the votes.

If certificates for each round are not stored permanently on the chain, then they will have to be persisted
locally by each node. This has the drawback of making it impossible to verify the evolution of the chain
without having the off-chain information about certificates.

7.4 Implementation path
The somewhat nice decoupling between the voting layer and the Nakamoto consensus layer, along with the
fact that votes are only taken into account in bulk, e.g. when they form a quorum on some round, seems to
make it possible to implement Peras in a way that does not impact too much consensus, and at very least in
an incremental way.

• It might be possible to experiment with Peras using real nodes on a special-purpose testnet. Votes and
certificates could be represented as ordinary transactions with well-known characteristics. A thread
could be added to the node to create and verify votes and certificates. The node’s chain-selection code
would have to communicate with that thread.

• A dedicated votes and certificate management process could be built and run separately, with the node
only periodically checking this process when it needs to decide upon chain selection. While this might
not be acceptable on a real production network due to the added latency on a critical path, it might
be good enough to experiment with Peras on a testnet.

• The network protocol for diffusing votes bears a lot of similarity to the kind of network needed by
Mithril on its path to increased decentralization, so the effort to develop those protocols could be
shared.

8 Conclusion
The analyses described in this report provides some evidence that the Peras protocol could be a viable
addition to the Cardano blockchain, in that it would significantly speed settlement (or, more precisely,
rapidly decrease settlement-failure probabilities) without burdening the nodes with substantial additional
computational or bandwidth requirements. Feedback regarding early versions of the Peras protocol, which

https://hackmd.io/jwAdFPzZQj-llwfavl8Ahw
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was untenable for efficient implementation, resulted in minor adjustments to the protocol which seem to make
it more practical for deployment. The analyses were achieved via a combined program of formalization in
Agda, network modeling using the ΔQ methodology, message-passing simulations in Haskell and Rust, and
dynamic QuickCheck testing. An important byproduct of this work was the formulation and demonstration
of a potentially reusable methodology that delivers a formal specification that is closely tied to a chain of
evidence involving modeling, simulation, and conformance testing.

The foregoing analyses have quantified and reduced several risks related to adoption of Peras. In particular,
the number and size of vote and certificate messages passing between nodes would not significantly impact
a node’s performance or tax its bandwidth. Similarly, the size of the block headers would not be impacted
by Peras, though some block bodies (one per voting round) would be several hundred bytes longer to accom-
modate a certificate that attests to a voting quorum having been achieved. The chain weight can be verified
externally by examining the history of certificates attached to blocks, but following the current best chain
would require a knowledge of the votes or certificates that had not yet been memorialized by inclusion of
a certificate in a block: nodes would have to persistently cache such information, which would only require
negligible memory and disk space. Vote and certificate processing have some temporal flexibility, so their
resource usage can be managed via backpressure and thread pools.

Several Peras-related risks remain. Primary is that the amount of adversarial stake required to repeatedly
force the protocol into a cool-down period has not yet been quantified: the length of that cool-down period
would be inversely proportional to the length of the round. Further research is warranted to study variants
of the Peras protocol that would shrink the duration of cool-down, or eliminate it altogether, but without
increasing the attack surface of the protocol. A related risk is that the settings for the Peras parameters have
not been concretised: this would elucidate the tradeoff between rapidity of settlement versus vulnerability
to adversarial stake or network disruptions. Committee size is a particularly important parameter to tune
because it affects not only the resistance to adversarial conditions but also the network and computations
resource burdens, and the size of certificates to be shared and stored. Other heretofore unmitigated risks
relate to the computational burden on nodes. Specifically, the CPU resources required to construct and
verify voting certificates can only be measured after the detailed algorithm for certificate construction has
been specified.

8.1 Recommendations
The next steps for Peras center upon consolidating the findings of this technical report into a full specification
for Peras with suitable level of detail and quantification for the drafting of a Cardano Improvement Proposal
(CIP). The detail should be sufficient to subsequently write a request for proposals (RFP) that includes
acceptance criteria for implementations. Concomitant with that would be an executable specification and
QuickCheck Dynamic conformance tests for evaluating implementations: ideally, both would be directly
derived from the Agda formulation of Peras. The executable specification could be packaged as a web-based,
interactive simulator so that stakeholders can explore the behavior of Peras themselves and build intuition
about the protocol. Such artifacts could play an important role in developing a unique value proposition for
Peras.

Work on the Peras protocol highlighted three areas where co-evolving improved tooling would facilitate
the full specification of the protocol and provide evidence for the business case for Peras’s adoption. Such
improvements would lay the groundwork for rapid assessment of other proposed and future protocols.

First, numerically quantifying the tradeoffs in settlement time vs. resistance to adversaries as a function
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of the nine new parameters required for configuring Peras requires moderately detailed network simulation.
Although work on Peras could continue down the path of elaborating the “homegrown” network simulations
described in this document, the alternative approach would be to invest in a more general simulator of
network mini-protocols. Such a simulation would operate at a higher level than the existing netsim, which
currently emphasizes the routing of messages, but could be built upon it. In general, time management
and representation of mini-protocols would be required in such a simulator. This recommendation reinforces
the conclusions of the recent Network Simulation Tools Comparison document, which states “We are now
ready to extract these utility tools and combine them into a general-purpose framework so that the team and
partners can utilize them and produce consistent output.”

Second, polishing the ΔQ toolset via a few capability enhancements, calibrated default settings, improved
documentation, and publication would enable a more rigorous analysis of Peras that stakeholders such as
researchers, SPOs, and implementers could reproduce and use in studying Peras variants and other proposed
protocols. The ΔQ software is already reasonably close to providing such capabilities, but needs some
investment and refinement.

Third, the Peras work so far has highlighted the opportunity for co-design of an Agda DSL (domain-specific
language) for specifying network consensus protocols in order to bridge the gap between research and im-
plementation. Researchers could employ such a DSL to concretely express the core constructs of protocols,
and prototyping teams can elaborate that into a formal specification along with the QuickCheck Dynamics
tests that would verify conformance of implementations to that specification. This provides a tighter “chain
of evidence” from the research papers defining a protocol into an implementable specification. The proof
of principle in this Peras work can be generalized to support development of other consensus protocols and
network definitions.

Finally, additional research may further improve the efficiency of the certificate schema by making the cer-
tificates monoidal (i.e., composable) or otherwise incremental. Safely shortening the cool-down period would
also be highly advantageous.
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